Numerical treatment of Retarded Boundary Integral Equations by Sparse Panel Clustering

نویسندگان

  • Wendy Kress
  • Stefan Sauter
چکیده

We consider the wave equation in a boundary integral formulation. The discretization in time is done by using convolution quadrature techniques and a Galerkin boundary element method for the spatial discretization. In a previous paper, we have introduced a sparse approximation of the system matrix by cutoff, in order to reduce the storage costs. In this paper, we extend this approach by introducing a panel clustering method to further reduce these costs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

The panel-clustering method for the wave equation in two spatial dimensions

We consider the numerical solution of the wave equation in a two-dimensional domain and start from a boundary integral formulation for its discretization. We employ the convolution quadrature (CQ) for the temporal and a Galerkin boundary element method (BEM) for the spatial discretization. Our main focus is the sparse approximation of the arising sequence of boundary integral operators by panel...

متن کامل

A New Version of Panel Clustering for the Boundary Element Method

We present a new version of panel clustering for the boundary element method. The intention of this method is to substantially reduce the work for solving boundary integral equations on complicated two-dimensional manifolds in R 3. The method is based upon a hierarchical structuring of the surface and an approximative factorization of the kernel of the associate integral operator in terms of sp...

متن کامل

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

Sparse Convolution Quadrature for Time Domain Boundary Integral Formulations of the Wave Equation

Many important physical applications are governed by the wave equation. The formulation as time domain boundary integral equations involves retarded potentials. For the numerical solution of this problem we employ the convolution quadrature method for the discretization in time and the Galerkin boundary element method for the space discretization. We introduce a simple a-priori cutoff strategy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006